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Abstract

Allocations of research funds across programs are often made for efficiency reasons. Social science research is shown to have small, lagged
but significant effects on U.S. agricultural efficiency when public agricultural R&D and extension are simultaneously taken into account. Farm
management and marketing research variables are used to explain variations in estimates of allocative and technical efficiency using a Bayesian
approach that incorporates stylized facts concerning lagged research impacts in a way that is less restrictive than popular polynomial distributed lags.
Results are reported in terms of means and standard deviations of estimated probability distributions of parameters and long-run total multipliers.
Extension is estimated to have a greater impact on both allocative and technical efficiency than either R&D or social science research.
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1. Introduction

One of the primary areas of emphasis of the agricultural
economics profession has been on assessing the benefits of
production-oriented agricultural research and extension (ARE)
(e.g., Bredahl and Peterson, 1976; Huffman and Evenson,
1992). Alston et al. (2000) and Evenson (2003) document the
breadth and depth of this effort. Assessment studies have of-
ten provided the information needed to evaluate ARE for ac-
countability purposes and to make resource allocation decisions
across programs. More recently, efforts have been made to con-
ceptualize and measure the benefits or impacts of social science
research (SSR) in agriculture (Gardner, 2004; Lindner, 1987;
Norton and Alwang, 2004). These studies suggest that the pri-
mary output of SSR is information. Thus, the problem of quan-
tifying SSR impacts becomes a matter of valuing information.
Economic surplus, decision theory, and econometric methods
have all been considered for this purpose.

Economic surplus analysis (ESA) is particularly useful for
valuing economic information from individual projects or well-
defined programs (Alston et al., 1998). Combining ESA with
decision theory may help in establishing causality between
project-level SSR and eventual decisions by an economic agent
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(Gardner, 2004; Norton and Schuh, 1981; Schimmelpfennig
and Norton, 2003). However, for accountability purposes, one
often prefers to evaluate aggregate research programs rather
than individual projects. For nonsocial science research, aggre-
gate benefits of public and private ARE have been evaluated
using econometric estimates of production, productivity, profit,
and cost functions (e.g., Huffman and Evenson, 1993). A ben-
efit of the econometric approach is that it provides a measure
of the statistical reliability of the results. However, aggregate
econometric assessment of SSR is difficult because of the di-
versity of the SSR programs affecting agriculture, the diffi-
culty of separating out the effects of social science from those
of other disciplines, and the fact that the users of social sci-
ence research information are often one step removed from the
beneficiaries.

For economic information that eventually affects producers,
there have been a few econometric attempts to value the agri-
cultural SSR input. For example, Norton (1987) assesses the
impacts of farm management and marketing research and ex-
tension (MMRE) on improving technical (TE) and allocative
(AE) efficiency in U.S. agriculture using a profit function. The
rationale for this work is that TE measures the ability of the firm
to minimize the inputs required to produce given outputs, and
this is an information problem that SSR should be able to help
solve. AE measures the inequality between the marginal rate of
technical substitution for a pair of inputs and the ratio of their
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input prices—this also has strong information requirements and
is potentially influenced by SSR.

In the past few years, several improvements have been made
in procedures for estimating TE and AE, using both paramet-
ric and nonparametric approaches. The procedure used most
widely in agricultural applications is the non-parametric data
envelopment analysis (DEA) procedure developed by Charnes
et al. (1994). This article uses DEA in a two-stage approach
to assessing whether SSR related to agricultural marketing
and management can explain variations in estimated efficiency
across U.S. states. The first stage uses DEA to generate esti-
mates of TE and AE. The second stage uses Bayesian methods
to assess the impacts of MMRE on estimated TE and AE scores.
Parametric approaches to obtaining TE and AE estimates, such
as estimating profit or cost functions to obtain stochastic fron-
tier estimates, require specification of a (possibly restrictive)
functional form. This article uses the alternative DEA approach
because it does not impose any prior restrictions on the under-
lying technology (Färe et al., 1985).

The next section uses the existing literature to motivate mod-
els that relate efficiency scores to variables including SSR. Hav-
ing motivated the structure of the relationships, we then discuss
estimation using sampling theory and Bayesian techniques. The
following two sections then describe the data and the empiri-
cal results. In the concluding section, we relate our findings to
previous results and discuss directions for future work.

2. Models and estimation methods

In order to relate efficiency scores to environmental variables
such as SSR, the literature provides several options. Stochastic
frontier analysts have accounted for environmental variables
using both one-stage (Battese and Coelli, 1995) and two-stage
approaches (Kalirajan, 1981; Pitt and Lee, 1981). The first stage
in the two-stage approach involves estimating efficiency in a
conventional stochastic frontier framework (i.e., without ac-
counting for environmental variables), while the second stage
involves regressing predicted efficiency scores on environmen-
tal variables. The problem with this approach is that the pre-
dicted efficiency scores can only be legitimately expressed as
a function of the environmental variables if the latter are for-
mally incorporated into the first stage (i.e., if we use a one-stage
approach). Including environmental variables in the first stage
of a stochastic frontier model makes the second stage unnec-
essary because the functional relationship between predicted
efficiency scores and environmental variables is theoretically
known. This is not the case for efficiency scores obtained us-
ing DEA—because the estimated frontier is nonparametric, the
functional relationship between efficiency scores and environ-
mental variables is unknown and no theoretical inconsistencies
arise from using a two-stage approach.

The DEA approach can also be used to account for environ-
mental variables in several ways (see Coelli et al., 1998). How-
ever, the two-stage procedure we use in this article is the most

convenient method for accounting for dynamics in the relation-
ship between DEA efficiency scores and SSR (in this article
we confirm earlier results that point to significant lags between
research spending and research impacts that are far beyond any
normal agricultural input and output relationships). The two-
stage procedure is also appealing in the context of previous
work by Chavas and Cox (1992), Evenson et al. (1987), Evenson
and Pray (1991), Huffman and Evenson (2001), McCunn and
Huffman (2000), Schimmelpfennig and Thirtle (1999), and
Thirtle and Bottomley (1989). These authors have established
that U.S. agricultural R&D, extension (EX), and farmer educa-
tion should be treated as determining variables in a second stage
after the estimation of total factor productivity (TFP). This has
been referred to as “two-stage decomposition.”

One of the most significant lessons of previous two-stage de-
composition analysis is that the models used for second-stage
estimation should incorporate both lags of first-order variables
and interaction terms. Due to the subtle and diffuse effects of
MMRE on efficiency caused by the factors discussed above, it
is difficult to obtain meaningful results without incorporating
nonsample information (i.e., stylized facts gleaned from earlier
studies) into the estimation process. The distributed lag mod-
els and estimation methods we use in this article have been
developed in this context.

2.1. Distributed lag models

Previous research on ARE has yielded some stylized facts on
research lag structures that we have attempted to incorporate.
Agricultural R&D and EX alter the production environment
facing producers. Public R&D is a public good with nonrival,
nonexcludable characteristics, and therefore affects the produc-
tion process as a whole, while EX has a broad mission to sup-
port “producers, families, communities, and other customers”
(http://www.reeusda.gov/).1 According to previous work (see
references for two-stage decomposition) above, the effects of
research are expected to influence AE and TE with lags of up
to 30 years (peak effects at 15 years for the symmetric lag
structure that is often assumed). EX should have shorter lags,
skewed toward the first few years, and with smaller tails in its
lag structure, but earlier empirical work has documented im-
pacts of EX with up to 10-year lags. The topics of public R&D
(probably more than EX) have changed over time but hope-
fully these changes mirror production changes (toward, e.g.,
more environment-friendly farming practices) with stable lag
structures.

Previous authors have reasonably complained about the size
of the task of testing all of these possible lags in research and EX
impacts. We extend our own grief by adding an SSR variable and
interaction terms. To deal with estimation problems we present a
new estimation approach that has not been applied to ARE, and

1 It might be argued that some aspects of agricultural extension influence the
efficiency with which producers operate the production process, but our data
are for the entire extension program.
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which is neither as restrictive as polynomial distributed lags nor
requires as many (implied) degrees of freedom as unrestricted
estimation of individual lags.

For this new approach we developed several pieces of prior
information based on previous research findings for the ARE
lag weights:

1. The annual weights on research (R&D) are expected to in-
crease in absolute value continuously up to at least lags five
or six and then to decline in absolute value up to at least lag
15 (insufficient observations are available to allow testing
longer lags, but this is expected to include peak effects).

2. EX is expected to have a shorter lag structure than research
and to increase in absolute value up to lags 1 or 2 and then
to decline in absolute value up to lag 10.

3. R&D and EX interaction terms with the same lag structure
as EX are considered for their potential policy interest and
total multiplier effects.

4. There is little evidence on expected lag weights for MMRE,
but it seems likely that the short-run effect might be like
EX with truncated longer-run effects—annual MMRE is ex-
pected to increase up to lags one or two and then decline up
to lag five.

The result is the following two-equation model for the
second-stage analysis:

TEit = β1 +
p∑

j=0

γ1jRDi,t−j +
q∑

j=0

φ1jEXi,t−j

+
r∑

j=0

α1jMMREi,t−j

s∑
j=0

θ1jRDi,t−jEXi,t−j + ε1it, (1)

AEit = β2 +
p∑

j=0

γ2j RDi,t−j +
q∑

j=0

φ2j EXi,t−j

+
r∑

j=0

α2jMMREi,t−j +
s∑

j=0

θ2jRDi,t−jEXi,t−j + ε2it ,

(2)

where the maximum lag lengths are p = 15, q =10, r = 5,
and s = 10. Consistent with the previous discussion, the lag
coefficients satisfy the constraints:

γn0 ≤ γn1 ≤ γn2 ≤ γn3 ≤ γn4 ≤ γn5 and

|γn6| ≥ |γn7| ≥ · · · ≥ |γn15|, (3)

φn0 ≤ φn1 and |φn2| ≥ |φn3| ≥ · · · ≥ |φn10|, (4)

αn0 ≤ αn1 and |αn2| ≥ |αn3| ≥ · · · ≥ |αn5|, and (5)

θn0 ≤ θn1 and |θn2| ≥ |θn3| ≥ · · · ≥ |θn10|, (6)

while the error terms satisfy E{ε ji t}= 0. For convenience, each
of Eqs. (1) and (2) can be written more compactly as

yt = x′
tβ + et , (7)

where β is 50 × 1, and xt is T × 50.2 Unconstrained ordinary
least squares (OLS) estimation of (7) is biased and inconsistent
because the dependent variables have an upper limit of 1. Un-
biased and consistent estimates can be obtained using a Tobit
limited dependent-variable approach. In a Tobit framework, the
observed variable yt is determined by

y∗
t = x′

tβ + et , (8)

yt =
{

1 if y∗
t > 1

y∗
t otherwise,

(9)

where et is iid normal with zero mean and variance σ 2. Thus,

Pr(yt = 1) = Pr(y∗
t ≥ 1) = Pr(x′

tβ + et ≥ 1)

= �

(
x′

tβ − 1

σ

)
.

(10)

Moreover, the likelihood function is (see Maddala, 1983,
p. 161):

p(y | θ ) = �
t≤T1

fN

(
yt |x′

tβ, σ 2
) × �

t>T1

�

(
x′

tβ − 1

σ

)
(11)

where θ = (β, σ ) and y = (y1, y2, . . . ,yT )′. Estimating the
parameters of (11) subject to the constraints (3)–(6) is not
straightforward. Maximum likelihood estimation is possible
if the absolute value signs are removed from the constraints.
Alternatively, the absolute value signs can be retained and the
model estimated in a Bayesian framework.

2.2. Maximum likelihood estimation

After dropping the absolute value signs from (3) to (6), we
write the constraints in the form

Dβ ≥ c, (12)

where D is a K × K nonsingular matrix and c is a K ×1 vector
with elements that are either 0 or −∞. Using (12) the original
model (7) can be rewritten as

yt = x′
tβ + et = x′

tD
−1Dβ + et = z′

tη + et , (13)

where zt
′ = xt

′D−1 and η = Dβ ≥ c. Recall that, since the
elements of c are either 0 or –∞, the problem of estimating β in
(7) subject to inequality constraints of the form (12) becomes
one of estimating η in (13) subject to inequality constraints
which ensure that particular elements of η are positive. In turn,

2 Without pooling the data, the subscript t is used to index all observations
(rather than using one subscript to index time periods and another subscript to
index states). It is also convenient to order the observations so that the first T1

observations on the dependent variable are uncensored, and the remaining T –
T1 observations are at their limit equal to 1.
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constraining ηk ≥ 0 can be accomplished by reparameterizing
ηkas ηk = λ2

k and then estimating the model in terms of λk.
After making these alterations to (11) the likelihood function

becomes

p(y | η, σ 2) = �
t≤T1

fN

(
yt |z′

tη, σ 2
) × �

t>T1

�

(
z′
tη − 1

σ

)
, (14)

where y = (y1, y2, . . . ,yT )′. Maximizing the likelihood function
(14) is straightforward.

2.3. Bayesian estimation

Removing the absolute value signs from constraints (3) to
(6) is computationally convenient for a sampling theory ver-
sion of the model, but has the undesirable effect of not allowing
negative coefficients to turn positive after peak effects (in ad-
dition to other undesirable side effects). To estimate the Tobit
model subject to constraints on the relative magnitudes of the
absolute values of the coefficients, it becomes necessary to use
a Bayesian approach. Bayesian methods are becoming increas-
ingly important in overcoming otherwise intractable sampling
theory difficulties (Gao and Lahiri, 2000; O’Donnell et al.,
1999).

To implement the Bayesian approach we adopt a noninfor-
mative joint prior (as in Chib, 1992, p. 89):

p(θ) ∝ 1

σ
× I (β ∈ S), (15)

where ∝ denotes “proportional to” and I(·) is an indicator func-
tion, which takes the value 1 if the argument is true and 0
otherwise. S is the set of feasible values defined by constraints
(3) to (6). The posterior density is then

p(θ | y) ∝ p(y | θ )p(θ) = �
t≤T1

fN

(
yt |x′

tβ, σ 2
)

× �
t>T1

�

(
x′

tβ − 1

σ

)

× 1

σ
× I (β ∈ S).

(16)

Unfortunately, it is difficult to sample directly from this poste-
rior using simple Markov Chain Monte Carlo (MCMC) algo-
rithms. Instead, we follow Chib (1992) and Tanner and Wong
(1987) and use a data augmentation algorithm that can be mo-
tivated by expressing the posterior as

p(θ | y) = ∫p(θ | y, z)p(z | y) dz, (17)

where p(θ | y, z) is the posterior density of θ given y and
the vector of latent observations z = (y∗

T1+1, y
∗
T1+2, . . . , y

∗
T )′.

From Eq. (17) it can be seen that p(θ | y) is the average of
p(θ | y, z) over all possible values of z. It follows that if we
had a sample of M observations on z, denoted z(1), . . . ,z(M), we
could approximate p(θ | y) using

p̂(θ | y) = M−1
∑
m

p(θ | y, z(m)). (18)

This approximation could then be used to generate observations
on θ , the parameter of interest. Thus, the first step is to obtain
observations on z. We do this by noting that the density p(z | y)
can be expressed as

p(z | y) = ∫p(z | y, θ )p(θ | y)dθ . (19)

Thus, if we had a sample of N observations on θ , denoted
θ (1), . . . ,θ (N), we could approximate p(z | y) as

p̂(z | y) = N−1
∑

n

p(z | y, θ (n)). (20)

This approximation can be used to generate observations on z.
In summary, to generate observations on θ and z we repeatedly
follow these steps;

i) generate a sample of observations z(1), . . . , z(M) using an
approximation to p(z | y),

ii) use z(1), . . . , z(M) to approximate p(θ | y),
iii) generate a sample of observations θ (1), . . . , θ (N) using the

current approximation to p(θ | y),
iv) use θ (1), . . . , θ (N) to approximate p(z | y), and
v) generate a sample of observations z(1), . . . , z(M) using the

current approximation to p(z | y).

Proceeding in this way, the sets of draws on θ and z can be
regarded as draws from the posterior densities p(θ | y) and p(z |
y). This result holds even when M = N = 1 (Tanner and Wong,
1987). In this article we make use of that result by setting
M = N = 1, which allows us to draw observations on θ and z
by using

p(zt |y, θ ) = p(y∗
t |y∗

t ≥ 1,β, σ 2)

= fN (y∗
t |x′

tβ, σ 2)/�

(
x′

tβ − 1

σ

)
× I (y∗

t ≥ 1),
(21)

p(β|σ , z, y) ∝ fN (β|(X′X)−1X′y∗, σ 2(X′X)−1)

× I (β ∈ S), (22)

p(σ | β, z, y) ∝ fIG(σ |2[(y∗ − Xβ)′(y∗ − Xβ)]−1, T /2)

∝ 1
σ T +1 exp

[− 1
2σ 2 (y∗ − Xβ)′(y∗ − Xβ)

]
, (23)

where y∗ = (y∗
1, y∗

2, . . . ,y∗
T
) = (y1, . . . ,yT1 ,z′)′ denotes the full

vector of latent variable observations and the inverted gamma
notation, fIG(·), is from Zellner (1971) (p. 371). The normal
density in (21) follows from (10) and the assumption that et is
normally distributed with mean 0 and variance σ 2. The densities
in (22) and (23) are standard results for multiple regression
models with noninformative priors (Zellner, 1971, p. 66–67).
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To generate from the truncated normal density in (21), we use
Devroye (1986)3:

zt = x′
tβ + σ

×�−1

[
�

(
1 − x′

tβ

σ

)
+ U (0, 1) × �

(
x′

tβ − 1

σ

)]
,

(24)

where U(0, 1) denotes a standard uniform random variable.
We can draw from (22) using a random-walk Metropolis–
Hastings algorithm (e.g., Griffiths et al., 2000). Finally, to draw
from (23) we simply note that if σ has an inverted gamma
distribution with parameters a and b, then ω = 1/σ 2 has a
gamma distribution with parameters a and b (Zellner, 1971,
p. 371). Thus, we draw ω from fG(ω | 2[(y∗ – Xβ)′(y∗ − Xβ)]−1,
T/2) and then obtain the draw σ = |

√
ω−1|.

3. Data

The input- and output-related data used to estimate the model
are state-level, transitive, multilateral Tornqvist indices for two
outputs (livestock and crops) and four inputs (capital, labor,
land, and materials). The data are available (accessed January,
2005) at http://usda.mannlib.cornell.edu after selecting “ERS”
and “Agricultural Productivity in the US.” No allowance is
made for technical progress in calculating the DEA efficiency
scores—this would require the estimation of a separate DEA
frontier for each time period. To account for technical change,
a time trend (T) representing Hicks-neutral technical change is
included in the equation for TE and AE. The DEA estimates of
AE and TE are for 48 contiguous states and 37 years (1960–
1996) yielding a panel of 1,776 observations. With the lag
structures discussed above, we end up with a sample of close
to 1,000.

Several panels of “determining” or environmental variables
are tested in the model. Data for total state-level agricultural
R&D (RD) are from the Current Research Information Sys-
tem (CRIS) maintained by the Department of Agriculture.4

The CRIS is an excellent source of disaggregated data on
agricultural research expenditures and scientist numbers for
the United States. The data for EX are real extension ex-
penditures per farm by state obtained from the Cooperative
State Research, Education, and Extension Service. State-level
summary statistics for these variables and for MMRE are re-
ported in Table 1. The MMRE variable itself is constructed
from two categories in the CRIS database: Farm Business
Management and Agricultural Marketing and Farm Supply.
These two SSR variables are measured in full time equivalent
(FTE) researchers, and are aggregated into one variable. The
FTEs were converted to expenditures and subtracted from the

3 This method can be unreliable when the argument in square brackets is
greater than 8 in absolute value. For such cases, an alternative method is pro-
vided by Geweke (1991).

4 We thank Dennis Ungelsbee of USDA for making these data available to
us.

Table 1
Descriptive statistics for agricultural R&D, extension, and social science re-
search

Variable∗ 1960–1996

Mean Standard Minimum Maximum
deviation

RD 22.771 17.952 1.5612 111.44
EX 1.0380 2.4621 0.0109 23.517
MMRE 5.4106 3.9277 0.0∗∗ 25.200

∗Notation refers to definitions in Eqs. (1) and (2).
∗∗There was no measured spending on these categories of MMRE in some

states in some years, for example, Rhode Island in 1975 and New Hampshire
in 1986.

RD variable to avoid double counting when that variable was
constructed.5

Several other variables might have immediate effects on the
production process in each state. The coefficient of variation
(CV) of crop and livestock prices was significant in Norton
(1987). An output Herfindahl index (HH), a measure of the
heterogeneity of the crop mix, is included in the current study
because more agriculturally diverse states might be expected to
find across-the-board efficiency more elusive. An infrastructure
variable, the miles of roads built (HI), and annual state devia-
tions from average rainfall (RN) are also included. Better roads
would be expected to positively affect the potential efficiency
of the production process, and more weather variability to neg-
atively affect it. Farmer education is not considered because
of allowances for educational attainment in the first-stage TFP
data.

A factor that is unmeasured is research spillovers. Attempts
to measure interstate spillovers of research knowledge, which
might be expected to substitute for state RD, led to problems
with multicollinearity and left too few degrees of freedom to
make reliable inferences. Likewise, government farm support
programs have not been considered because they showed little
interstate variability. To economize on degrees of freedom and
to attempt to capture some of these unmeasured effects, regional
dummy variables were tested. However, these did not improve
the estimated models.

4. Results

Bayesian parameter estimates and pseudo-t-ratios obtained
from MCMC samples of size 500,000 are reported in Table 2.6

The maximum likelihood estimates are not reported to save

5 Unfortunately, an attempt to construct a management and marketing ex-
tension variable was thwarted by the numerous changes in the way extension
FTEs and expenditures were categorized by the Cooperative State Research,
Education, and Extension Service over time.

6 Large samples were chosen because the Monte Carlo chains were slow-
mixing. The term pseudo-t-ratio is used because, strictly speaking, t-ratios
are not meaningful in a Bayesian context. Although it is a sampling theory
concept, we will also use terms such as statistical significance in cases where
point estimates are more than two estimated standard deviations from zero.
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Table 2
Results of Bayesian estimation of impacts of research on technical and alloca-
tive efficiency—Eqs. (1) and (2)

Dependent variables 966 observations

Regressors Technical efficiency (TE) Allocative efficiency (AE)

Coefficient Pseudo-t- Coefficient Pseudo-t-
statistic statistic

Constant 7.43E−01 3,905.66∗∗ 7.10E−01 241.23∗∗
MMRE −3.57E−05 −1.54 −6.36E−04 −1.80∗
MMRE(−1) 1.11E−05 0.37 −1.87E−04 −1.01
MMRE(−2) 1.15E−04 1.86∗ 7.52E−04 2.65∗∗
MMRE(−3) 7.45E−05 3.10∗∗ 3.09E−04 2.71∗∗
MMRE(−4) 5.12E−05 3.25∗∗ 1.69E−04 2.25∗
MMRE(−5) −4.74E−06 −0.16 −1.06E−05 −0.17
RD −2.47E−05 −2.60∗∗ −3.21E−04 −3.27∗∗
RD(−1) −1.54E−05 −2.08∗ −2.02E−04 −5.46∗∗
RD(−2) −8.05E−06 −1.29 −1.48E−04 −4.23∗∗
RD(−3) −1.76E−06 −0.35 −7.96E−05 −1.89∗
RD(−4) 3.98E−06 0.82 −1.67E−05 −0.38
RD(−5) 1.40E−05 1.71∗ 7.63E−05 1.42
RD(−6) 2.39E−05 2.48∗∗ 3.60E−04 3.49∗∗
RD(−7) 1.75E−05 2.53∗∗ 1.91E−04 3.09∗∗
RD(−8) 1.34E−05 2.66∗∗ 1.51E−04 2.62∗∗
RD(−9) 1.09E−05 2.54∗∗ 1.15E−04 3.11∗∗
RD(−10) 8.88E−06 2.40∗∗ 9.10E−05 3.03∗∗
RD(−11) 7.23E−06 2.29∗ 7.34E−05 2.76∗∗
RD(−12) 5.84E−06 2.10∗ 5.98E−05 2.39∗∗
RD(−13) −4.44E−06 −1.66∗ −4.57E−05 −2.06∗
RD(−14) −1.06E−06 −0.30 7.10E−06 0.20
RD(−15) −1.85E−07 −0.09 −4.42E−06 −0.22
EX −3.38E−04 −2.63∗∗ −5.94E−03 −11.24∗∗
EX(−1) −2.19E−04 −1.90∗ −4.79E−03 −5.16∗∗
EX(−2) 2.31E−04 2.56∗∗ 4.13E−03 4.99∗∗
EX(−3) 1.51E−04 2.62∗∗ 2.98E−03 4.07∗∗
EX(−4) 1.06E−04 2.71∗∗ 2.09E−03 4.75∗∗
EX(−5) 8.03E−05 2.60∗∗ 1.57E−03 4.25∗∗
EX(−6) 6.28E−05 2.47∗∗ 1.23E−03 3.37∗∗
EX(−7) 4.87E−05 2.20∗ 9.70E−04 2.65∗∗
EX(−8) 3.61E−05 1.84∗ −7.65E−04 −2.23∗
EX(−9) 7.94E−06 0.28 −3.55E−04 −0.77
EX(−10) 1.62E−06 0.09 −6.43E−05 −0.23
RDEX 2.94E−05 12.67∗∗ −2.10E−05 −0.40
RDEX(−1) 3.41E−05 14.15∗∗ 2.34E−05 0.68
RDEX(−2) 3.54E−05 15.51∗∗ 7.96E−05 2.32∗
RDEX(−3) 3.33E−05 18.81∗∗ 5.81E−05 2.86∗∗
RDEX(−4) 3.14E−05 24.74∗∗ 4.11E−05 3.22∗∗
RDEX(−5) 3.01E−05 26.83∗∗ 2.93E−05 3.49∗∗
RDEX(−6) 2.90E−05 28.32∗∗ 2.22E−05 3.20∗∗
RDEX(−7) 2.78E−05 24.57∗∗ 1.69E−05 2.75∗∗
RDEX(−8) 2.66E−05 20.36∗∗ 1.25E−05 2.20∗
RDEX(−9) 2.52E−05 15.78∗∗ −4.34E−06 −0.47
RDEX(−10) 2.24E−05 7.96∗∗ −2.39E−06 −0.42
T 7.66E−04 135.97∗∗ 6.18E−04 14.66∗∗
CV −4.15E−02 −279.59∗∗ 5.30E−02 52.81∗∗
HH 2.43E−01 692.66∗∗ 2.98E−01 50.47∗∗
HI 2.39E−03 423.13∗∗ −1.14E−03 −25.89∗∗
RN 3.26E−04 53.26∗∗ −6.34E−04 −4.68∗∗

∗∗ and ∗ denote significance at the 99 and 95% levels, respectively.

space (and also because they are obtained using constraints that
are less than ideal). The results reported in Table 2 indicate
that the social science variables (MMRE) have similar impacts
on TE and AE. Farm Business Management, and Agricultural

Marketing have significant and positive effects on both TE and
AE in years 2, 3, and 4, with the size of the impact diminishing
by half or more with each additional annual lag. MMRE has
a significant and negative impact on AE in the current period,
which could be caused by early adopters of social science in-
novations raising the bar for later adopters who come along
2–4 years later.

The effects of R&D and EX on TE and AE are also quite
similar. R&D has positive impacts on TE in lags 5–12, and
bigger positive impacts on AE in lags 6–12. R&D’s impacts are
negative on AE in the current period and lag one while they are
negative on TE through lag three. The peak size effects of R&D
on both TE and AE are in lag 6, declining each year thereafter
until turning negative in lag 13.

The early effects of EX on both TE and AE are similarly
negative in the current period and in lag one, showing a peak
effect in lag two and declining and significant for six periods
thereafter. Like those of MMRE, the early negative effects of
ARE are probably caused by early adopting farmers operating
on or near the efficiency frontier who make quick, thorough use
of new technology and EX recommendations, to the relative
detriment of most other farmers. It is unlikely that these are
actual negative effects of ARE since their impacts are positive
and significant for many years thereafter. The interaction terms
indicate that R&D and EX are complements throughout, with
effects on TE for 11 periods and effects on AE in periods 2–8.
This complementarity of R&D and EX would tend to reinforce
both the early negative and later positive individual effects of
R&D and EX.

Price variability negatively influences TE but has a positive
effect on AE, while the heterogeneity of the crop mix posi-
tively impacts both TE and AE. More miles of paved roads
are associated with higher TE but lower AE, while higher de-
viations from average rainfall increase TE while reducing AE.
Various reasons might be provided to explain these results, but
the more revealing fact is that all of the supplementary vari-
ables are significant and three out of four of them have different
signed effects on TE and AE. This probably indicates that the
similarity of the results obtained for the research variables are
not due to similarities in the construction of the DEA esti-
mates, but are actual knowledge-based effects of research on
efficiency.

4.1. Total multipliers

Most of the research variables have some significant negative
lags so there is some interest in the size and sign of their total
multipliers. To calculate a total multiplier for the effect of R&D
on TE that accounts for the interaction with EX, we evaluate,

m11 = ∂TEit

∂RDi,t

+ ∂TEit

∂RDi,t−1
+ · · · + ∂TEit

∂RDi,t−p

= γ10 + γ11

+ · · · + γ1,15 + θ10EXit + θ11EXi,t−1 + · · ·
+ θ1,10EXi,t−10. (25)
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The total effect of social science research on TE can be mea-
sured more simply as,

m13 = ∂TEit

∂MMREi,t

+ ∂TEit

∂MMREi,t−1
+ · · · + ∂TEit

∂MMREi,t−r

= α10 + α12 + · · · + α15, (26)

since there are no estimated interaction effects between MMRE
and ARE. Total multipliers are calculated similarly for each
of the research variables on AE and all of the multipliers are
evaluated by setting all current and lagged values of RD, EX,
and MMRE equal to their sample means.

Bayesian estimates of the coefficients and pseudo-t-statistics
for the long-run multipliers are reported in Table 3.7 The total
multipliers for MMRE show that farm management and mar-
keting research have a positive and significant impact on both
TE and AE. The mean effect of these social science research
variables on TE is about one-half the size of their effect on AE.
The overall effect of RD on TE, accounting for the comple-
mentarity between RD and EX previously identified in Table 2,
is positive and roughly one-third smaller than the effect of RD
on AE. These results indicate that agricultural R&D and so-
cial science research both improve producers’ AE more than
they increase the TE of the production system. This is consis-
tent with the observation that crop mix decisions have become
more complicated over the last 30+ years, as cropping alterna-
tives have expanded. Research has focused on giving farmers
more options to deal with changing market and environmen-
tal conditions and this research has tended to raise AE more
than TE.

The overall effects of EX on TE and AE, including inter-
action effects with RD, are both positive and much larger in
magnitude than the total effects of either RD or MMRE. Con-
trary to other research results, EX has a slightly bigger effect on
TE than AE. This appears to indicate that EX is having funda-
mentally different impacts, working to increase the efficiency of
the production system while other research has more important
impacts on farmers’ ability to effectively produce increasingly
differentiated agricultural products. Substantial EX activities
might focus on helping farmers benefit from farm programs,
but these activities are unobservable in the present setting and
would not be reflected in the AE estimates.

5. Conclusion

The value of agricultural marketing and management re-
search in the United States appears to be positive, significant,
and derived more from impacts on allocative than technical ef-
ficiency. The overall impact of SSR on allocative efficiency is
almost twice as large as its impact on technical efficiency. A
next step will be to use these results to generate a rate of return
to public investments in this type of research, and to consider
whether these results hold in other developed countries.

7 Analogous equilibrium multipliers would simply be the sums of the lag
coefficients for each variable (Greene, 1997, p. 784).

Table 3
Long-run total multipliers from Bayesian estimation of impacts of research on
technical and allocative efficiency—Eqs. (1) and (2)

Dependent variables 966 observations

Research variable Technical Allocative
efficiency (TE) efficiency (AE)

Coefficient Pseudo-t- Coefficient Pseudo-t-
statistic statistic

MMRE (m13,23) 2.11E−04 7.55∗∗ 3.97E−04 1.89∗
RD (m11,21)a 3.98E−04 79.11∗∗ 5.81E−04 8.47∗∗
EX (m12,22) 7.43E−03 210.77∗∗ 6.77E−03 32.93∗∗

∗∗ and ∗ denote significance at the 99 and 95% levels, respectively.
aFor definitions of multipliers see Eqs. (25) and (26).

Public agricultural research and EX activities have positive
overall effects on TE. R&D has a smaller positive effect that
begins later, while EX has a strong positive impact from the
second year and continuing into the higher lags. R&D depends
to some extent on EX to disseminate new research results, but
the size and longevity of EX’s impacts on technical efficiency
are substantial. R&D and EX both also have positive overall
impacts on allocative efficiency. Even though the impact of
R&D on AE is almost double its impact on TE, and EX’s impact
on AE is slightly smaller than on TE, EX’s overall impact on
AE is still several magnitudes greater than R&D’s impact on
AE. In contrast, Huffman and Evenson (2001) find that public
crop research (unlagged stocks) have larger impacts on crop
TFP than EX does (a familiar result), but we would expect
EX and R&D to have different impacts on productivity than
efficiency.

The availability of TE and AE estimates from the popular
data envelopment analysis approach has allowed for a relatively
straightforward assessment of the impacts of an important cate-
gory of SSR, in addition to the impacts of agricultural R&D and
EX. Studies of banking (Berger et al., 1993) and other sectors
have found technical and allocative efficiency estimates to be
somewhat dependent on the approach used to generate them
(e.g., DEA, stochastic frontier cost or profit functions). There-
fore, it may be useful to compare estimated impacts of SSR
on TE and AE scores that have been generated with alternative
techniques, to assess the robustness of the results.
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